Closing Thursday:
6.1, 6.2 Closing Tuesday:
6.3, 6.4

Closing Next Thursday:
6.5

6.2 Compound Interest

We say interest is compounding if it is computed on the entire balance (principal and previous interest). And we have

$$
F=P(1+i)^{n}=P\left(1+\frac{r}{m}\right)^{m t}
$$

Unless otherwise stated, assume interest is compounded.
(If you are doing 6.1 homework or if it say "simple interest", then it is simple interest. All other times assume interest is compounding).

Bank terminology:
" 6% per year" means compounding once a year ($r=0.06, m=1$)
"6\% rate, compounded semiannually" means " $6 / 2=3 \%$, twice a year" ($\mathrm{r}=0.06, m=2$)
" 8% rate, compounded quarterly" means " $8 / 4=2 \%, 4$ times a year" ($\mathrm{r}=0.08, m=4$)
" 5% rate, compounded monthly" means " $5 / 12=0.4166 \ldots \%, 12$ times a year" ($\mathrm{r}=0.05, \mathrm{~m}=12$)

> Quick Examples:
> (a) Harry invests $\$ 5000$ in an account
> earning 5% per year. What is the balance in 20 years?
(b) Ron invests $\$ 5000$ in an account earning 5\% annually, compounded quarterly. What is the balance in 20 years?

Continuous Compounding Assume you invest $\$ 5000$ and $r=0.03$.

$$
F=5000\left(1+\frac{0.03}{m}\right)^{m t}
$$

The value this is approaching is called the value from continuous compounding. And it is also given by

$$
F=P e^{r t}
$$

$$
F=5000 e^{0.03(1)} \approx \$ 5152.27267
$$

	m	Balance one yr.
semi- annual	2	$\$ 5151.12500$
quarterly	4	$\$ 5151.69595$
monthly	12	$\$ 5152.07979$
Daily	365	$\$ 5152.26632$
Hourly	87605	$\$ 5152.27241$
every minute	525600	$\$ 5152.27267$
every second	3153600	$\$ 5152.27267$

Quick Examples:

(a) How much must you invest at 8\%, compounded monthly in order to have $\$ 10,000$ in 5 years?
(b) You invest \$500 in an account earning 3%, compounded quarterly. How long until you have \$5000?
(c) You invest \$75 in an account where interest is computed semi-annually. After 7 years, the balance is $\$ 210$. What is the nominal rate, r ?
(d) You place 1000 into an account that pays 4%, compounded continuously. How long does it take to double your money?

Summary:

For ALL problems in chapter 6:

1. Identify the type of account.
2. Input given facts.
3. Solve for the unknown.

Algebra Notes:

$$
F=P(1+i)^{n}=P\left(1+\frac{r}{m}\right)^{m t}
$$

To solve for P, you just divide.
To solve for r, a root will be needed.
To solve for t, a $\ln (\quad)$ will be needed.

$$
F=P e^{r t}
$$

To solve for P, you just divide.
To solve for r, a $\ln (\quad)$ will be needed.
To solve for t, $\ln ()$ will be needed.

Question:

Which is best?
A: 4%, compounded semi-annually
B: 3.97%, compounded monthly
C: 3.955%, compounded continuously
Compute the APY for each \& compare!

Annual Percentage Yield (APY) is the actual percentage change in one year.

We get this by plugging in $t=1$ and look at the amount we are multiplying by as a percentage increase:

$$
\begin{aligned}
& A P Y=\left[\left(1+\frac{r}{m}\right)^{m(1)}-1\right] \cdot 100 \% \\
& A P Y=\left[e^{r(1)}-1\right] \cdot 100 \%
\end{aligned}
$$

